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Abstract This paper addresses the onset of Bénard convection on a rotating horizontally confined
layer of water near the temperature of maximum density that is heated from below. A quadratic
relation between temperature and density is assumed near the density extremum. A linear stability
analysis is employed to determine the critical conditions for the onset of thermal instability. The
resulting eigenvalue problem is numerically solved by expanding the amplitudes of the temperature
and velocity perturbations in a truncated eigenfunction and power series. The validity of the
principle of exchange of stabilities is proved analytically for a certain case and numerically
investigated in general. Plots of the marginal stability curves as well as the variation of the critical
Rayleigh number with other dimensionless parameters which naturally arise in the problem are
also presented and discussed.

1. Introduction
Bénard convection is a well-known problem in hydrodynamic stability and
marks a major success in linear stability theory. It involves a horizontally
confined layer of fluid that is heated from below and under the influence of
gravity. This configuration will eventually succumb to convective motion once
the temperature gradient in the fluid layer exceeds a certain threshold. This
problem represents the competing of two forces, the destabilizing effect of
buoyancy versus the stabilizing effect of viscosity. The ratio of these opposing
forces forms the parameter Ra which is referred to as the Rayleigh number.

Bénard (1900) simulated the above instability through extensive
experiments. Later, Rayleigh (1916) derived the mathematical theory which
predicted the onset of instability. The original problem was concerned with a
fluid having a linear relationship between density and temperature. While this
is a reasonable approximation for many fluids, it is not adequate in dealing
with fluids which are known to have a density extremum. The obvious
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example is, of course, water whose density attains a maximum at 48C. Near this
temperature of maximum density the relationship between density and
temperature is well approximated by a quadratic equation.

The aim of the present investigation is to address the consequences of this
quadratic density-temperature relationship as well as those of rotation to the
stability characteristics for the case where the fluid layer is horizontally
confined by stress-free surfaces and the case where the layer is confined by
rigid surfaces. The effect of the nonlinear dependence of the density on the
temperature in a nonrotating layer has been investigated in several other
studies including Hwang et al. (1984) and Mollendorf and Jahn (1983). In these
previous investigations, the marginally stable state is numerically determined
by setting both the real and imaginary parts of the complex growth rate of
disturbances to zero. However, this approach is based on the validity of the
principle of exchange of stabilities which can only be proved rigorously for the
case of a nonrotating fluid layer horizontally confined between free surfaces
(Veronis, 1963). In the current investigation, we present an alternate analytical
proof to that given in Veronis (1963) and apply numerical methods which allow
us to calculate the complex growth rate. We are thus able to numerically verify
the validity of the principle of exchange of stabilities in all cases as well as
confirm that the neutrally stable state is also marginally stable.

The paper is organised as follows. In the next section, the equations
governing the problem are presented along with the corresponding boundary
conditions. Following this, in Section 3, a linear stability analysis is performed
and the principle of exchange of stabilities is proved. Section 4 is devoted to the
numerical methods implemented to solve the resulting eigenvalue problem
emerging from the linear stability analysis along with presenting and
discussing the numerical results. Finally, a brief conclusion summarizing the
results is included in Section 5.

2. Formulation of the problem
We consider a two-dimensional, viscous, incompressible layer of fluid of
thickness d that is arranged horizontally with respect to a Cartesian coordinate
system. The top and bottom of the layer, located at z ¼ d=2 and z ¼ 2d=2;
respectively, are isothermal with the bottom maintained at a higher
temperature than the top. The set up is shown in Figure 1. The fluid is
initially motionless and we imagine that at time t ¼ 0 the temperature
difference between the top and bottom is applied which may then induce
thermal convection. We consider separately the cases with and without
rotation.

The fluid motion will be governed by the usual conservation of mass,
momentum and energy equations. The dimensional equations for the velocity
~v 0 ¼ ðu 0; v 0;w 0Þ; pressure P 0 and temperature T 0 in vector form are
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›~v 0

›t
þ ð~v 0 ·7Þ~v 0 þ f ~k £ ~v 0 ¼ 2

1

r0
7P 0 2

r 0

r0
g~k þ n72~v 0; ð1Þ

7 · ~v 0 ¼ 0; ð2Þ

›T 0

›t
þ ~v 0 ·7T 0 ¼ k72T 0: ð3Þ

Here, g denotes the acceleration due to gravity, n the kinematic viscosity,
k the thermal diffusivity, r0 a reference density at temperature T0 and f is twice
the angular speed of rotation about the z-axis (denoted by ~k). In geophysical
applications, f refers to the Coriolis parameter. In the above equations various
assumptions and approximations have been made. These include the
Boussinesq approximation, constant fluid properties (with the exception of
density) and the neglect of dissipation of mechanical energy into heat. Drazin
and Reid (1981) give a lengthy discussion regarding the validity of these
assumptions and approximations. For water near the temperature of maximum
density, T0 ¼ 48C; the equation of state, needed to close the above system, is
well approximated by the quadratic form (Eklund, 1963)

r 0 ¼ r0 1 2
a

2
ðT 0 2 T0Þ

2
h i

: ð4Þ

We next decompose the flow variables into a steady-state part plus an
unsteady perturbation as follows:

Figure 1.
Sketch of the fluid
configuration
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~v 0 ¼ ~0 þ ~v; P 0 ¼ PðzÞ þ p; T 0 ¼ TðzÞ þ T;

where P(z) represents the hydrostatic pressure and TðzÞ ¼ T1 2 Gðz þ d=2Þ is
the linear steady-state temperature profile across the fluid layer. The constant
G refers to the magnitude of the vertical temperature gradient and T1 is the
fixed temperature at the bottom of the layer. Substituting these into equations
(1) and (3) and linearizing yields

›~v

›t
¼ 2f ~k £ ~v 2

1

r0
7p þ ag

�
TðzÞ2 T0

�
T~k þ n72~v; ð5Þ

›T

›t
2 Gw ¼ k72T: ð6Þ

For the case of a nonrotating fluid layer the corresponding linearised equations
are simply obtained by setting f ¼ 0:

For the case where the fluid layer is horizontally confined by rigid surfaces,
the system of equations (5) and (6) is subject to the isothermal and no-slip
boundary conditions given by

u ¼ v ¼ w ¼ T ¼ 0 at z ¼ ^
d

2
: ð7Þ

If the fluid layer is confined by free surfaces then the boundary conditions are

w ¼
›u

›z
þ

›w

›x
¼

›v

›z
þ

›w

›y
¼ T ¼ 0 at z ¼ ^

d

2
; ð8Þ

which result from the zero stress and the isothermal conditions.
In the following section, a linear stability analysis is presented and used to

determine the conditions under which the steady flow becomes unstable.

3. Linear stability analysis
Since previous studies have not included the effects of rotation, the governing
equations will be derived. The procedure is standard and similar to that
without rotation. We begin by simplifying the linearised equation (5). Taking
the Laplacian, 72, of the z component of equation (5) gives

›

›t
ð72wÞ ¼ 2

1

r0
72 ›p

›z
þ n74w þ ag

�
TðzÞ2 T0

�
72T 2 2agG

›T

›z
: ð9Þ

Next, taking the divergence of equation (9) and making use of equation (2)
we obtain
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0 ¼ 2
1

r0
72p þ ag7 ·

�
ðTðzÞ2 T0ÞT

�
~k 2 f z; ð10Þ

where

z ¼
›u

›y
2

›v

›x

is the z component of vorticity. Differentiating the above with respect to z yields

0 ¼ 2
1

r0
72 ›p

›z
2 2agG

›T

›z
þ ag

�
TðzÞ2 T0

� ›2T

›z2
2 f

›z

›z
: ð11Þ

The pressure term can now be eliminated by subtracting equation (11) from
equation (9) to arrive at

›

›t
ð72wÞ ¼ n74w þ ag

�
TðzÞ2 T0

�
72

H T þ f
›z

›z
; ð12Þ

where

72
H ¼

›2

›x2
þ

›2

›y2

represents the horizontal Laplacian operator. Lastly, the linearised vorticity
equation is

›z

›t
¼ n72z2 f

›w

›z
: ð13Þ

Thus, the problem with rotation is governed by equations (6), (12) and (13),
while the nonrotating case will be governed by equations (6) and (12) with
f ¼ 0 in equation (12).

We now cast the equations in nondimensional form by scaling the variables
as follows

t !
d 2

k
t; ðx; y; zÞ! ðxd; yd; zdÞ; T ! T0T; w !

T0k

Gd 2
w; and

z!
T0k

Gd 3
z:

In dimensionless form the equations are

›

›t
2 72

� �
T ¼ w; ð14Þ
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1

Pr

›

›t
2 72

� �
72w ¼ Raðr 2 z 2 1=2Þ72

H T þ Ro
›z

›z
; ð15Þ

1

Pr

›

›t
2 72

� �
z ¼ 2Ro

›w

›z
; ð16Þ

where Ra ¼ agG2d 5=nk is the Rayleigh number, Pr ¼ n=k is the Prandtl
number, Ro ¼ fd 2=n is a dimensionless rotational parameter, and r ¼
ðT1 2 T0Þ=Gd is a positive dimensionless temperature difference parameter.

We next assume normal modes solutions having the form

w ¼ ŴðzÞe ikxþilyþst;

T ¼ T̂ðzÞe ikxþilyþst;

z ¼ ẑðzÞe ikxþilyþst:

ð17Þ

Hence, by using ›=›t ! s; 72
H !2K 2 and 72 ! D 2 2 K 2 the amplitudes

ŴðzÞ; T̂ðzÞ and ẑðzÞ will satisfy (suppressing the hats)�
s2 ðD 2 2 K 2Þ

�
T ¼ W ; ð18Þ

s

Pr
2 ðD 2 2 K 2Þ

h i�
D 2 2 K 2

�
W ¼ 2RaK 2

�
r 2 z 21=2

�
T þ RoDz; ð19Þ

s

Pr
2 ðD 2 2 K 2Þ

h i
z ¼ 2RoDW ; ð20Þ

where K 2 ¼ k2 þ l 2 and D denotes the differential operator d/dz.
The amplitude of disturbances having a positive real part for s will be

amplified in time thus indicating instability whereas a negative real part
corresponds to stability. A relationship between s and the parameters r, Ro, Ra,
and Pr, for a certain disturbance characterised by the value of K, can be
obtained by regarding equations (18)-(20) as an eigenvalue problem and
determining the value of s for which a nontrivial solution exists. For analytical
and numerical purposes the equations will be consolidated into a single
equation in subsequent sections. We next discuss the principle of exchange of
stabilities for a specified case where it is proved to hold.

3.1 Principle of exchange of stabilities
Here it will be shown that in the nonrotating case with free surfaces, if
RðsÞ ¼ 0 then IðsÞ ¼ 0: Starting with the set of equations for W and T, given
by equations (18) and (19) with Ro ¼ 0; the first step is to combine them to
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obtain a single equation for T. This yields the following sixth order differential
equation:

D 6T 2 3K 2 þ 1þ
1

Pr

� �
s

	 

D 4T þK 2 3K 2 þ2 1þ

1

Pr

� �
s

	 

D 2T

þ
s2

Pr
D 2T 2K 2 K 4 þRa zþ

1

2
2 r

� �
þ 1þ

1

Pr

� �
K 2sþ

s2

Pr

	 

T ¼ 0:

ð21Þ

From the boundary conditions (7) and (8) and the continuity equation (2) we
obtain the conditions

T ¼D 2T ¼ 0 and D 3T ¼ðsþK 2ÞDT at z¼^1=2; ð22Þ

for the case of rigid surfaces and

T ¼D 2T ¼D 4T ¼ 0 at z¼^1=2; ð23Þ

for the case of free surfaces.
In the above, the only complex quantities are T(z) and s. If s ¼ gþ ib; we

will show that if g ¼ 0 then b ¼ 0; that is, the marginal state separating
stability from instability is given by s ¼ 0: Taking the complex conjugate,
denoted by an asterisk, of equation (21) we obtain

D 6T* 2 3K 2 þ 1 þ
1

Pr

� �
s *

	 

D 4T *

þ K 2 3K 2 þ 2 1 þ
1

Pr

� �
s *

	 

D 2T* þ

s*2

Pr
D 2T*

2 K 2 K 4 þ Ra z þ
1

2
2 r

� �
þ 1 þ

1

Pr

� �
K 2s * þ

s*2

Pr

" #
T* ¼ 0:

ð24Þ

Next we multiply equation (21) by T * and subtract equation (24) multiplied by
T. This produces the following equation:
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ðT*D 6T 2 TD 6T* Þ2 3K 2 þ 1 þ
1

Pr

� �
g

	 

ðT*D 4T 2 TD 4T* Þ

2 i 1 þ
1

Pr

� �
bðT*D 4T þ TD 4T* Þ

þ K 2 3K 2 þ 2 1 þ
1

Pr

� �
g

	 

ðT*D 2T 2 TD 2T* Þ

þ
g2 2 b2

Pr
ðT*D 2T 2 TD 2T* Þ þ i

2gb

Pr
ðT*D 2T þ TD 2T* Þ

þ i2K 2 1 þ
1

Pr

� �
bðT*D 2T þ TD 2T* Þ

2 i2K 2 1 þ
1

Pr

� �
K 2 þ

2g

Pr

	 

bTT* ¼ 0:

ð25Þ

Making use of some straight-forward algebraic manipulations outlined in the
Appendix we obtain the result

2 ib 2 1þ
1

Pr

� �Z 1=2

21=2

jD 2Tj
2
dzþ4K 2 1þ

1

Pr

� �Z 1=2

21=2

jDTj
2
dz

(

þ
4g

Pr

Z 1=2

21=2

jDTj
2
dzþ2K 2 K 2 1þ

1

Pr

� �
þ

2g

Pr

	 
Z 1=2

21=2

jTj
2
dz

)
¼0;

ð26Þ

for the free surfaces case. Setting g¼ 0 and noting that everything in the curly
brackets is positive, the only way the above equation can be satisfied is if
b¼ 0:

For the rigid surfaces case we get the term

ðDTD 4T* 2 DT*D 4TÞj
1=2
21=2;

appearing on the left-hand-side of equation (26). It is not at all clear whether
this term vanishes. As pointed out by Veronis (1963), the principle of exchange
of stabilities has not been analytically established for the case of rigid surfaces.

3.2 Limiting cases
The study of the stability problem for arbitrary values of the parameter r
requires numerical methods. However, for the limiting cases r !1 and r ! 0;
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and in the absence of rotation an analytic approach can be taken by making use
of the principle of exchange of stabilities. Setting Ro ¼ 0 and s ¼ 0; and
combining equations (18) and (19) we obtain for the marginal state the equation

ðD 2 2 K 2Þ3T ¼ 2RaK 2ðr 2 j ÞT; ð27Þ

where j ¼ z þ 1=2 and D now represents the operator d/dj.
We first consider the case r !1: This limit corresponds to the density

extremum being attained closer and closer to the top of the fluid layer, with
the density increasing from the bottom to the top. Therefore, for large values of
r the entire layer is essentially top heavy. Since j [ ½0; 1� and we are dealing
with the case r !1; it follows that r @ j; and as a result equation (27) can be
approximated by

ðD 2 2 K 2Þ3T ¼ 2Ra*K 2T;

where Ra* ¼ rRa: This equation coincides with the one encountered in the
classical problem with Ra* as the classical Rayleigh number. Hence the
asymptotic formula:

Ra ,
Ra*

r
as r !1; ð28Þ

is easily deduced.
In the limit r ! 0; the density extremum is attained closer and closer to the

bottom of the layer. Consequently, we have a top-heavy stratification only in a
thin layer near the bottom. This then suggests approximating equation (27) by
setting j ¼ 0; as j ¼ 0 corresponds to the bottom of the layer. Also, it is
appropriate to rescale the problem as follows. We first point out that T ¼ T0

when j ¼ r and so the top-heavy stratification is contained in a region of
thickness r. Thus, we rescale the vertical coordinate according to j ¼ rx:
Equation (27) then simplifies to

ð ~D2 2 ~K2Þ3T ¼ 2Ra* ~K2T;

where Ra* ¼ r 5Ra; ~D ; d=dx; and ~K ¼ rK which, once again, is the equation
governing the disturbances in the classical problem. It then follows that the
asymptotic form for small r is

Ra ,
Ra*

r 5
as r ! 0: ð29Þ

In the next section we will numerically confirm the validity of the principle of
exchange of stabilities and compare the results with the asymptotic forms for
both large r and small r.
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4. Numerical methods and results
Our goal is to establish the dependence of the complex growth rate s with the
other parameters of the problem. By analyzing the variation of s we will be
able to draw conclusions regarding the conditions under which instability
occurs. We will also be able to investigate the validity of the principle of
exchange of stabilities and verify whether neutral stability coincides with
marginal stability.

To obtain numerical results we consider the problem governing the
amplitude of the temperature disturbance which in the nonrotating case is
given by equation (21) together with conditions (22) for the rigid surfaces case
and conditions (23) for the free surfaces case. For the rotating case with free
surfaces the governing problem is dictated by

D 8T 2 4K 2 þ 1 þ
2

Pr

� �
s

	 

D 6T

þ 6K 4 þ 3 1 þ
2

Pr

� �
K 2sþ 2 þ

1

Pr

� �
s2

Pr
þ Ro2

	 

D 4T

2 4K 6 þ 3 1 þ
2

Pr

� �
K 4sþ 2 2 þ

1

Pr

� �
s2K 2

Pr

�

þ Ro2 þ Ra z þ
1

2
2 r

� �	 

K 2 þ

s3

Pr2
þ Ro2s

�
D 2T

2 2RaK 2DT þ K 2 K 6 þ 1 þ
2

Pr

� �
K 4sþ 2 þ

1

Pr

� �
s2K 2

Pr

	

þ
s3

Pr2
þ Ra z þ

1

2
2 r

� �
s

Pr
þ K 2

� �

T ¼ 0:

along with the conditions

D 6T ¼ D 4T ¼ D 2T ¼ T ¼ 0 at z ¼ ^1=2 :

We will apply two methods to obtain the eigenvalues to the above-mentioned
problems. One consists of expanding T(z) in a truncated eigenfunction series
while the other approach is to use a truncated power series.

The eigenfunction expansion of the form

TðzÞ ¼
Xn

j¼1

Bj sin ½ jp ðz þ1=2 Þ�
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is appropriate for the free surfaces case since the eigenfunctions
{sin ½ jp ðz þ1=2Þ�}

n
j¼1 satisfy the boundary conditions. Subsequent to

substituting this expansion for T(z) into the governing differential equation
we multiply the equation by sin ½mp ðz þ1=2Þ�; for m ¼ 1; 2; . . .; n and integrate
with respect to z from 21/2 to 1/2. This yields a homogeneous system of
n algebraic equations for the coefficients Bj. For example, in the nonrotating
case the system becomes

Xn

j¼1

�
½ð j2p2 þ K 2Þ3 þ ðs=Pr þ sÞð j2p2 þ K 2Þ2

þ s2=Prð j2p2 þ K 2Þ2 rRaK 2 þ1=2 RaK 2�dmj

þ 2Ra K 2Imjð1 2 dmjÞ
�

Bj ¼ 0; m ¼ 1; 2; . . .; n;

where dmj is the Kronecker delta and

Imj ¼

24mj

p 2ðm 22j 2Þ2
if m þ j is odd

0 if m þ j is even:

8<
:

Since the eigenfunctions used in the above expansion do not satisfy the
boundary conditions which apply to the rigid surfaces case, we consider a
truncated power series expansion of the form

TðzÞ ¼
Xn21

j¼0

aj

j!
z j:

Substituting this expansion into the governing differential equation and
equating the coefficients of powers of z to zero, we obtain the following
recurrence relation for the coefficients aj:

j RaK 2aj21 2 K 2
�
Raðr 21=2Þ2 ðs=Pr þ K 2Þðsþ K 2Þ

�
aj

2
�
K 2ðsþ K 2Þ þ ðs=Pr þ K 2Þðsþ 2K 2Þ

�
ajþ2

þ ðs=Pr þ sþ 3K 2Þajþ4 þ ajþ6 ¼ 0; j ¼ 0; . . .; n 2 7:

Using this relation and the boundary conditions we again obtain a
homogeneous systems of n algebraic equations for the coefficients. We point
out that the truncated power series method can also be used for the free
surfaces case, thus allowing us to compare the results obtained using the two
methods.
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For both the expansion methods, equating the determinant of the coefficient
matrix of the algebraic system to zero enables us to solve for s. The
determinant was numerically computed using the IMSL routine DLFDCB.
Then the IMSL routine DZANLY was applied to obtain the roots of the
dispersion equation. Particularly, we are only interested in the root having the
largest real part. This routine uses Müller’s method which can be regarded as a
generalization of the Secant method. While the Secant method uses two initial
approximations to linearly estimate the roots of a polynomial, Müller’s method
uses three approximations to quadratically estimate the roots. The details of
this method are presented in Müller’s original paper (Müller, 1956) as well as in
texts on numerical analysis such as Burden and Faires (1985). The advantage
offered by Müller’s method is that the technique, in general, will converge for
any initial approximation. However, Müller’s method is not quite as efficient as
Newton’s method. Its order of convergence near a root is ,1.84 compared to
Newton’s method which is 2; but, it is better than the Secant method whose
order is ,1.62. The stopping criterion of the routine DZANLY is the size of the
relative error between successive approximations to the root. This relative
error was set to 10215 which is the accuracy of the computer’s double-precision.

In order to test our numerical method we have compared the numerical
results with exact analytical results for the classical Bénard problem where the
fluid layer is not rotating and the density is assumed to vary linearly with the
temperature. For example, for the free surfaces case the exact analytical
equation for the curve of neutral stability is (Drazin and Reid, 1981)
Ra ¼ ðp2 þ K 2Þ3=K 2: Excellent agreement between this curve and the
numerical results was observed. In particular, the numerically determined
critical Rayleigh number and corresponding value of K are Racrit ¼ 658
and Kcrit ¼ 2:21; while the exact values are Racrit ¼ 27p4=4 < 657:5 and
Kcrit ¼ p=

ffiffiffi
2

p
< 2:22:

Comparisons have also been made between the numerical results and the
asymptotic forms given by equations (28) and (29). Presented in Figures 2 and 3
are graphs of the critical Rayleigh number as a function of r for the nonrotating
free surfaces case and the nonrotating rigid surfaces case, respectively. It is
clear from these diagrams that the numerically determined Racrit approaches
the analytically determined asymptotic behavior for both small r and large r.

We next compare the results obtained from the two expansion methods for
T(z). Figure 4 shows the growth rate R(s) as a function of K using various
number of terms retained in the series. The figure demonstrates the excellent
agreement between the two expansion methods and also that the series
converge fairly rapidly. We also point out that numerical experiments have
verified that the growth rate is a strictly monotone function of K in the
neighbourhood of a root. This is a strong evidence that the neutrally stable
state is, in fact, marginally stable.
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Figure 2.
Variation of the critical
Rayleigh number with r
for the nonrotating free
surfaces case with
Pr ¼ 11.6

Figure 3.
Variation of the critical
Rayleigh number with r
for the nonrotating case
with rigid surfaces with
Pr ¼ 11.6
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The validity of the principle of exchange of stabilities can be verified by
determining if IðsÞ ¼ 0 when RðsÞ ¼ 0: Our numerical investigation
indicates that the principle of exchange of stabilities is valid in the absence
of rotation for both the case of free surfaces and the case of rigid surfaces. Also,
as in the case of the classical Bénard problem, numerical experiments
demonstrated that the marginal stability curves showed very little sensitivity
to the Prandtl number. This further supports the validity of the principle of
exchange of stabilities since when s ¼ 0 the Pr dependence vanishes.

For the rotating case with free surfaces and a linear dependence between
density and temperature, it has been shown (Chandrasekhar, 1981) that the
principle of exchange of stabilities is valid only if Pr $ 1: For the case Pr , 1
an important question is whether, under the critical conditions for the onset of
instability, the instability manifests itself as stationary convection or as
oscillations having a growing amplitude (referred to as “overstability”). It turns
out that there is a critical Prandtl number Pr* (Pr* ¼ 0:6766 for the case of free
surfaces) such that for Pr $ Pr* the onset of instability is manifested as
stationary convection. In other words, for this range of Pr values, at the onset of
instability IðsÞ ¼ 0; and furthermore, as a result the critical conditions are
independent of Pr. For Pr , Pr* ; on the other hand, there is a critical
relationship between Pr and the rotational parameter Ro such that the onset of
instability is manifested as overstability if Pr is sufficiently small or if Ro

Figure 4.
Variation of the growth
rate with K for the free

surfaces case with no
rotation, r ¼ 0.42,
Ra ¼ 46,000, and

Pr ¼ 11.6
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is sufficiently large. We have found that as r was increased, and thus our model
approaches the classical one, the results approach those of Chandrasekhar.

Now, by decreasing the value of r we can gauge the effect of the density
extremum on the type of instability at the onset of instability. Our results
indicate that the density extremum suppresses the onset of instability as
overstability. More specifically, there is a critical value of r (say r*) such that if
r , r* the onset of instability occurs as stationary convection rather than
overstability. This fact is illustrated by the marginal stability curves presented
in Figures 5 and 6. Our numerical experiments indicate that r* is a decreasing
function of Ro and an increasing function of Pr.

In order to investigate the effect of the density extremum on the onset of
thermal instability we have determined the variation of the critical Rayleigh
number as a function of the parameter r. Recall that as r decreases, the position
where the density extremum is attained by the basic state moves downward
and therefore reduces the thickness of the top-heavy region formed at the
bottom of the fluid layer. As a result, we expect that decreasing r has a
stabilizing effect. Indeed, the results presented in Figures 2, 3, and 7 indicate
that Racrit is a decreasing function of r in all cases. The variation of the critical
K value with r is listed in Table I.

The results in Figures 2 and 3 also indicate that a fluid layer confined
between free surfaces is more unstable than one confined between rigid
surfaces as is the case for the classical Bénard problem. Furthermore, as it can

Figure 5.
Marginal stability curve
for the free surfaces case
with r ¼ 5, Pr ¼ 0.2, and
Ro ¼ 35
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Figure 6.
Marginal stability curve

for the free surfaces case
with r ¼ 1, Pr ¼ 0.2, and

Ro ¼ 35

Figure 7.
Variation of the critical

Rayleigh number with r
for the free surfaces case

with Pr ¼ 11.6
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be seen from Figure 8 the region of instability in the Ra 2 K plane is larger for
the free surfaces case. In particular, for all supercritical Ra values a larger
range of modes are unstable in the free surfaces case when compared with the
rigid surfaces case.

The variation of the critical disturbances with z is shown in Figure 9. This
graph shows the z dependence of the amplitude of the temperature disturbance
T(z), scaled by its maximum value. As previously explained, small values of r
correspond to situations in which the region of top-heavy stratification near

Free surfaces Rigid surfaces

r Racrit Kcrit Racrit Kcrit

0.42 44,333 3.88 94,163 4.91
0.45 28,732 3.53 61,137 4.5
0.5 16,995 3.02 37,326 4.11
0.54 11,123 2.63 25,726 3.65
0.58 7,206 2.63 17,564 3.39
0.62 4,889 2.3 12,290 3.25
0.68 3,488 2.26 8,923 3.21
0.75 2,580 2.24 6,634 3.15
1.0 1,309 2.24 3,390 3.12
7.5 94 2.21 244 3.11

Table I.
Critical K values for
the nonrotating case
with Pr ¼ 11.6

Figure 8.
Marginal stability curves
for the nonrotating case
with r ¼ 0.67 and
Pr ¼ 11.6
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the bottom surface is relatively thin. Accordingly, as r decreases the
disturbance distribution becomes skewed towards the bottom of the fluid layer.

Lastly, to assess the effect of rotation on the thermal instability we compare
the results obtained for the nonrotating case with those obtained having
various values of the parameter Ro. The results presented in Figure 7 indicate
that a rotating layer is more stable than a nonrotating one. This is confirmed by
the marginal stability curves presented in Figure 10 which indicate that the
critical Rayleigh number increases with Ro as does the region of stability in the
Ra 2 K plane.

5. Summary
Two stability problems related to the classical Bénard convection problem
have been presented. Both problems involve a fluid possessing a density
extremum with a quadratic equation of state. In one problem the fluid layer is
stationary while in the other the entire configuration is allowed to rotate about
the z-axis. The boundary surfaces were assumed to be either free surfaces or
rigid surfaces.

As revealed by the numerical results, both rotation and the presence of a
density extremum have a stabilizing effect on the thermal convection problem.
This can be explained as follows. Rotation acts so as to suppress vertical
motion, and hence thermal convection, by restricting the motion to the
horizontal plane. The partial stable stratification in the layer, which occurs

Figure 9.
Scaled amplitude of

the critical temperature
disturbance for the

nonrotating rigid
surfaces case with

Pr ¼ 11.6
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when the density extremum lies between the top and bottom of the fluid layer,
further acts to reduce vertical velocities. This combined effect attempts to
impose a two-dimensional nature on the flow, confining the motion to the
horizontal plane. An additional effect of the density extremum is to allow the
onset of stationary convection instead of oscillatory instability which is
associated with small Prandtl numbers and fast rotation.
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Appendix
For simplifying equation (25) we made use of the following identities:

T*D 6T 2 TD 6T* ¼ D½T*D 5T 2 TD 5T* � þ D½DTD 4T* 2 DT*D 4T�

þ D½D 2T*D 3T 2 D 2TD 3T* �;

T*D 4T 2 TD 4T* ¼ D½T*D 3T 2 TD 3T* � þ D½DTD 2T* 2 DT*D 2T�;

T*D 2T 2 TD 2T* ¼ D½T*DT 2 TDT* �;

T*D 2T þ TD 2T* ¼ D½T*DT þ TDT* �2 2DT*DT;

T*D 4T þ TD 4T* ¼ D½T*D 3T þ TD 3T* �2 D½DT*D 2T þ DTD 2T* � þ 2D 2T*D 2T:

Equation (25) was integrated term-by-term from z ¼ 21=2 to z ¼ 1=2: Owing to the boundary
conditions (22) and (23), each of the integrated terms become:

Z 1=2

21=2

ðT*D 6T 2 TD 6T* Þ dz ¼

0 for free surfaces case

ðDTD 4T* 2 DT*D 4TÞj
1=2
21=2 for rigid surfaces case

8<
:

Z 1=2

21=2

ðT*D 4T 2 TD 4T* Þ dz ¼ 0 for both cases;

Z 1=2

21=2

ðT*D 4T þ TD 4T* Þ dz ¼ 2

Z 1=2

21=2

jD 2Tj
2

dz for both cases;

Z 1=2

21=2

ðT*D 2T 2 TD 2T* Þ dz ¼ 0 for both cases;

Z 1=2

21=2

ðT*D 2T þ TD 2T* Þ dz ¼ 22

Z 1=2

21=2

jDTj
2

dz for both cases:
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